

TRADITIONAL HPC WORKLOAD

EXPANDING UNIVERSE OF THE NEW AGE OF HPC

NEW WORKFLOWS EMERGING TO SOLVE GRAND CHALLENGES

NVIDIA ROADMAP EVOLVING TO MEET THE CHALLENGE

SIMULATION & EXPERIMENT INTEGRATED WITH ML & AI

Integrated workflow with real-time analysis, steering and visualization for human in the loop

WORKFLOW TO WORKSTREAMS

Optimize and bring the best solution to that create the integrated workflow

WORKFLOW TO WORKSTREAMS

HGX

HOLOSCAN SDK: INTEGRATING DATA STREAMING FROM THE EDGE TO THE DATACENTER

 Build their applications using a mix of C++, Python, JAX

- Develop AI microservices combining low-latency data streaming while passing more complex tasks to data center resources
- Scale from embedded to datacenter

ADVANCED LIGHT SOURCE: @ LBNL

From ~105 seconds to 12 seconds

- For more details watch: Accelerating Sensor Processing Pipelines with NVIDIA Toolkits
- The GTC talk may reference internal names used during initial development

UKAE EARLY VERSION OF DIGITAL TWIN FOR TOKAMAK REACTOR

ENGAGEMENTS WITH HPC*AI*EDGE

ALS/LBNL
Optimizing Ptychography
pipeline

CNMS/ORNL
Automating Microscopy

APS/ANL

Al accelerated

Nanoscale x-ray imaging

DIII-D/GA/UKAE

Al surrogate,
CGYRO, Digital
Twin

LHCb/CERN

Design complete for using NVIDIA A40 for HLT

HRR HFD Jaser plasma

HRR HED laser plasma experiments workflow

SUPERCHARGING SCIENCE EXPERIMENTS AND INSTRUMENTS

ANL/ APS ACCELERATES X-RAY PTYCHOGRAPHY 300X WITH PTYCHONN

PtychoNN paper: AI-enabled high-resolution scanning coherent diffraction imaging

ADVANCED BIOIMAGING CENTER @UC-BERKELEY REAL TIME LIVE CELL IMAGING LIGHT SHEET MICROSCOPY

Link to keynote video - https://youtu.be/rXG27G3bWzY

RISE OF HPC AT THE EDGE

Posing a New Set of Challenges for HPC

STREAMING DEPLOYMENT IS HARD FOR DATA SCIENTISTS, RESEARCHERS AND DEVOPS Streaming Data Easily Scale Implementation Performance Developer Combining multiple Ease-of Use datastreams

ASSIMILATION OF SENSOR DATA ACROSS MULTIPLE INDUSTRIES

VISION

Harmonize the streaming AI framework architecture for developing cloud native, disaggregated scalable applications from embedded systems to Datacenter

Maximize reuse Modular

COMPOSING AN HPC STREAMING DATA PIPELINE USING STREAMING REACTIVE FRAMEWORK (SRF*)

SRF* is a reactive, networkaware, flexible, and performance-oriented streaming data framework that standardizes building modular and reusable pipeline mixing C++, Python, JAX

- Asynchronous computation and mitigation of I/O and GPU blocking
- Distributed computation with message transfers over RMDA using UCX
- Dynamic reconfiguration to scale up and out at runtime
- Designed to mitigate backpressure with concurrent blocking queues between stages
- Hybrid HPC and Cloud Native

ANATOMY OF A SRF PIPELINE

Definitions

- A SRF pipeline is composed of Segments
- Segments are composed of Sources, Sinks, and Nodes (Source + Sink)
- Segments also guaranteed compute within a single node, can connect nodes via network (Edge, Cloud, or Datacenter), and contain MPI support
- Nodes process an input stream, create an output stream, and can be implemented with Python or C++
- Components are linked by Edges which are implemented as Channels
- Channels move data from sources to sinks and provide a backpressure policy

TO LEARN MORE ABOUT SENSOR DATA PROCESSING

- Blog Facing the Edge Data Challenge with HPC + Al
- GTC Spring 2022 High Performance Geospatial Image Processing at the Edge*
 - Geospatial image analysis using DPUs in an edge device designed to meet the Size-Weight-and-Power requirements for aircraft deployment.
- PtychoNN paper: Al-enabled high-resolution scanning coherent diffraction imaging
 - The Advanced Photon Source at Argonne National Laboratory runs PtychoNN on an Orin AGX at the x-ray detector. It is available for use at other light sources around the world.
- GTC Spring 2022 Accelerating Sensor Processing Pipelines with NVIDIA Toolkits*
 - Faster imaging pipelines by using JAX and SRF to processing streaming data with applications in Ptychography and Micrsocopy
- See the SRF description above and the GitHub page

DIGITAL TWIN: ACTIONABLE RESULTS AN ACTIONABLE TIME

DIGITAL TWINS WILL EXIST AT EVERY SCALE

DIGITAL TWIN AT REALISTIC COMPLEXITY

OMNIVERSE: PLATFORM FOR BUILDING DIGITAL TWINS

EXAMPLE: BEAM PATTERN EXPLORATION FOR PLACING 5G ANTENNA

ADVANCED TOOLS AND TECHNOLOGIES

Foundational Platform Components

CONNECT

Coupling

KIT

Application API User experience

SIMULATION

Virtual Actor

RTX RENDERER

Virtual Sensor

DATA HOMOGENIZATION VIA USD

UNIVERSAL SCENE DESCRIPTION

The "HTML" of 3D Virtual Worlds

- Developed by Pixar
- Foundation for NVIDIA Omniverse
- Open-sourced API and file framework for complex scene graphs
- Easily extensible, simplifies interchange of assets between industry software
- Introduces novel concept of layering
- Enables simultaneous collaboration for large teams in different department working on the same scene
- Originated in M&E, now becoming a standard across industries including AEC, Manufacturing, Product Design, Robotics

OMNIVERSE NUCLEUS

Asset Database and Collaboration Engine

- Allows multiple software tools to talk to each other as well as live sync workflow
- Universal asset exchange can house assets of any filetype
- Enables collaboration on large, ultra-complex scenes and passes only the change deltas
- Because only deltas are exchanged, extremely fast creation/replication is enabled
- No more hour-long or overnight uploading/downloading of entire scene files everything is real-time and live
- Enables a single source of truth and eliminates messy, redundant file copies

UKAE EVALUATED OV WITH JOREK SIMULTIONS FOR FUSION REACTOR

- •Integration of open source science application (GEANT4)
- •FAIR Workflow with Omniverse
- Building extensions
- Multi-user Collaboration
- •Photorealistic rendering with real time Interaction

PREPARING FOR THE NEXT DECADE OF SCIENTIFIC COMPUTING

INTEGRATING THE SIMULATION +AI AND EXPERIMENT WORKFLOW

ACCELERATING THE SENSOR / EXPERIMENT DATA PROCESSING

BUILDING A DIGITAL TWIN TOWARDS A SCIENCE GRAND CHALLENGE

